Patrimoine nerc ientifique

Catherine Ballé Marie-Laure Baudement Catherine Cuenca

Dominique Poulot Anne-Sophie Rozay

La Documentation française

SOMMAIRE —

Préface Pascale Heurtel	,	7
Introduction Daniel Thoulou	Nuze	11
PARTIE 1 PATSTEC, 1	un réseau national et régional	15
	x confluences des patrimoines scientifiques et techniques	19
	ationale de sauvegarde du patrimoine scientifique et technic toire	
en France	panorama actuel des activités : cartographie et chiffres clés	39
	n Lorraine et dans le Grand Nancy	43
	collaboration originale en Normandie preland, Jean-Marc Routoure	47
	taine : deux entités pour une missionia, Audrey Pennel	57
Partie 2		
La sauvegard	le au quotidien	63
	et sauvegarde : les techniciens comme agents doubles d, Emmanuel Couqueberg, Stéphane Maître	67
La machine à b Julie Priser, Lau	oulles, de l'idée à l'expérience urent Courbin, Éric Gicquel	77
L'inventaire du	fonds Lallemand à l'Observatoire de Paris	87

L'histoire de la microscopie à Toulouse
Sauvegarder les codes sources de la recherche
PARTIE 3 Patrimoine de la recherche et Enseignement supérieur11
Une politique volontariste à Aix-Marseille
Rendre visible l'invisible : une histoire de la recherche lilloise
Collecter le patrimoine scientifique : une tentative de démarche globale à l'université de Tours
Les patrimoines régionaux, un gain de liberté et d'efficience
La collecte d'un savoir à l'échelle d'un laboratoire
PARTIE 4 La patrimonialisation des organismes de recherche15
Le plateau technique de microscopie de l'INRAE
70 ans d'histoire de l'innovation à l'Inria
Grenoble, un environnement de grands équipements
PARTIE 5 La recherche des entreprises : une patrimonialisation
La valorisation des collections du Centre historique minier de Lewarde
L'aventure Michelin
Une page d'histoire des composants électroniques en France
La sauvegarde immatérielle de l'innovation industrielle

Résitech, une collaboration originale en Normandie

Sylvain Chambreland Jean-Marc Routoure

En 2008, la mission nationale de sauvegarde du patrimoine scientifique et technique conventionnait avec l'INSA (Institut national des sciences appliquées) Rouen Normandie un partenariat pour la mise en place d'actions de sauvegarde et de mise en valeur au sein des établissements d'enseignement supérieur et de recherche régionaux.

Dès la première année de conventionnement, la direction de l'INSA a souhaité, avec l'université de Rouen, concrétiser cette décision en créant le réseau scientifique industriel et technique haut-normand (Résitech HN). L'objectif principal était de rassembler les acteurs locaux engagés dans des actions patrimoniales en lien avec la mission, tout en les rapprochant des acteurs de la diffusion de la culture scientifique. Plusieurs musées ont ainsi peu à peu adhéré au réseau, parmi lesquels le musée national de l'Éducation (Munaé), le musée industriel de la Corderie Vallois, le musée Flaubert d'Histoire de la médecine et la Fabrique des savoirs d'Elbeuf, de même que quelques associations tels l'Aspeg (Association de sauvegarde du patrimoine électrique et gaz), Science Action (le centre régional de culture scientifique, technique et industrielle) et Expotec (le centre d'histoire sociale). D'autres institutions patrimoniales comme le Service de l'Inventaire général régional et les archives départementales de Seine-Maritime ont aussi répondu favorablement à l'initiative.

Un comité de pilotage assure la gouvernance du réseau, avec l'appui d'un comité scientifique dédié. La coopération entre ces acteurs a permis une diversité d'approches et a ouvert de nouvelles perspectives pour le développement de projets communs autour du patrimoine scientifique et technique.

Le portage par l'INSA Rouen Normandie

Le fait que l'INSA de Rouen porte le projet de sauvegarde du patrimoine en Normandie n'est pas un hasard. Un premier inventaire y avait déjà été initié avant même l'établissement de la convention avec la mission PATSTEC. L'INSA de Rouen, consciente de son histoire et de son identité, avait organisé, avec l'expertise d'Anne Bidois, socio-historienne, des événements commémoratifs à l'heure des 90 ans de l'Institut de chimie de Rouen (INSCIR) en 1997 ¹.

C'est à l'occasion d'un projet de déménagement vers un nouveau campus que l'INSA a été amené à réfléchir au devenir de sa collection d'instruments scientifiques, entreposée dans les sous-sols. Un premier travail de recensement et de documentation a été entrepris dès 2004-2005², ce qui a grandement facilité, en 2008, les premiers inventaires réalisés dans le cadre de la mission PATSTEC, aboutissant à plus de 280 objets « fichés ».

L'université de Rouen

Si des collections d'instruments avaient été repérées à l'INSA de Rouen, ce n'était pas encore le cas à l'université ni dans ses laboratoires environnants. L'université de Rouen, « université nouvelle » fondée officiellement en 1966, ne bénéficie pas d'une histoire longue, et la conscience patrimoniale chez ses membres n'est pas une évidence. Du point de vue de l'instrumentation scientifique, peu de traces matérielles restaient visibles, et le déménagement des sections scientifiques au début des années 2000 laissait à penser qu'une grande partie du matériel avait dû être jetée.

La situation des laboratoires de recherche à l'INSA et à l'université est similaire : un certain nombre d'entre eux a connu des déménagements majeurs au moment desquels la préoccupation patrimoniale n'était pas d'actualité. La démarche de sauvegarde ne faisait pas partie des réflexes, encore moins des priorités.

Des appels à participation lors du lancement de Résitech avaient été envoyés de manière générique aux différents laboratoires de recherche; le comité de pilotage, en s'appuyant sur le comité scientifique régional, avait émis des préconisations de thématiques prioritaires, à savoir la chimie industrielle, les

¹ Le premier Institut chimique de Rouen, fondé en 1917, deviendra en 1959 Institut national supérieur de chimie industrielle de Rouen (INSCIR), avant de passer INSA de Rouen (Institut national des sciences appliquées) en 1985.

² En 2004, Anne Caldin (responsable de la cellule culturelle) et Jean-Noël Le Toulouzan (enseignant) parviennent à mobiliser des enseignants de communication: plus de 200 étudiants travailleront à l'inventaire de ces instruments avec Emmanuelle Réal, chargée d'étude du patrimoine industriel au service d'Inventaire général de Haute-Normandie.

Stroboscope Philips inventorié en 2008, collections de l'INSA Rouen.

sciences des matériaux et la thermochimie. Les premiers chantiers d'inventaire effectifs ont été le fruit de l'implication de personnes de terrain, où le bouche à oreille a joué un rôle certain.

Des collaborations fructueuses

De 2008 à 2018, les travaux d'inventaire se déroulent au sein de laboratoires de recherche mixtes sous les tutelles du CNRS, de l'université de Rouen et de l'INSA : au Groupe de physique des matériaux (GPM) et au laboratoire CORIA (Complexe de recherche interdisciplinaire en aérothermochimie), à l'Institut de chimie organique fine (IRCOF) ou bien à l'Institut universitaire de technologie (IUT) de Rouen ou l'Institut national supérieur de professorat et d'éducation (INSPE) de Rouen. Le plus souvent, deux cas de figure se présentent : soit les objets sont stockés dans des recoins de laboratoires,

soit, s'ils ont le privilège d'être jugés esthétiques, ils décorent des bureaux ou des lieux de convivialité. Ces usages décoratifs ne sont donc pas négatifs; en assurant la première sauvegarde physique d'un objet, ils constituent finalement une certaine prise en compte du patrimoine. Suivant les préconisations de la mission nationale PATSTEC, la première étape a consisté à repérer les objets, les identifier en lien avec des correspondants locaux, puis les marquer d'une étiquette avant de les inventorier dans la base de données. Les pièces inventoriées le sont pour la plupart du temps *in situ*. Le marquage par l'étiquette, où figurent un numéro d'inventaire et un contact, constitue une protection symbolique : l'objet n'est pas à l'abandon. Ces opérations de repérage ont abouti à la rédaction de près de 800 fiches d'inventaire d'instruments liés à des collections des établissements et de laboratoires affiliés à l'université de Rouen. Des liens se sont noués au fil du temps avec les personnes intéressées ici ou là par la démarche, créant un groupe actif de bénévoles.

Dès la première année d'existence du réseau, une exposition a été montée. Ce format dupliqué à plusieurs reprises a donné lieu à la production de cinq versions itinérantes³, qui ont été présentées sur différents sites universitaires à Rouen et Caen, dans les locaux de l'Atrium (centre de culture scientifique, technique et industrielle en Normandie) ainsi qu'au sein de trois collèges situés dans l'Eure, en périphérie de Rouen. Parallèlement, d'autres actions de mise en valeur du patrimoine, des conférences⁴, la réalisation de documentaires⁵ et des publications⁶ ont contribué à une reconnaissance de ce patrimoine.

Au fur et à mesure des différentes collectes, mais aussi dans un objectif de pérennisation du projet de sauvegarde, il s'est rapidement révélé souhaitable de trouver des espaces de stockage du matériel inventorié. Lors de l'emménagement dans ses nouveaux locaux sur le site de Saint-Étienne-du-Rouvray, l'INSA de Rouen a réservé une salle de 90 m² dédiée entièrement à la conservation des collections. À l'université de Rouen, une salle de cours de superficie équivalente a été attribuée, puis, en 2017, la directrice de l'UFR des sciences et techniques, en lien avec le vice-président chargé de la diffusion de la culture scientifique, a proposé un transfert des collections vers un nouveau lieu plus vaste situé sous un amphithéâtre. Aujourd'hui, c'est sur 120 m² que sont

³ «Les objets des sciences » (2008-2012), «La science d'hier à aujourd'hui, une histoire d'instruments » (2012-2015), «Voir la lumière, mesures, sciences et curiosité » (2015-2019), «Vous avez dit... disquette? » (2019-2022).

⁴ Conférences «Autour du livre *Le patrimoine scientifique et technique, un projet contemporain*», 24 mars 2011 avec Robert Halleux, Catherine Ballé et Catherine Cuenca, à la Maison de l'université de Rouen; « De la brocante à la culture. Pourquoi préserver le patrimoine de la science contemporaine?» 17 avril 2015, Forum des savoirs, Science Action Normandie, Rouen.

⁵ Coproductions CNRS Images, Mifsud, N., « Un instrument et des hommes, l'aventure de la sonde atomique à Rouen », 2014, « Lumière et mesures, histoire(s) du laboratoire CORIA », 2021.

⁶ Bidois, A., Rozay A. S. (dir.), *Osons la technique, patrimoine scientifique et technique en Normandie*, Rouen, Éditions Point de vue, 2018. Rozay, A.-S., Chambreland, S., «Voir la lumière: patrimoine et culture scientifique en milieu scolaire», *La Lettre de l'OCIM*, n° 184, 2019, p. 32-37.

accueillis les objets et instruments repérés et inventoriés au sein de l'université de Rouen, issus du GPM, du laboratoire CORIA et de l'INSPE. L'effort des établissements propriétaires pour la mise en place de ces espaces de stockage concrétise la prise en compte de l'intérêt des objets. Ainsi l'ensemble d'objets épars est-il considéré comme un ensemble cohérent et devient une collection patrimoniale légitime. Ces salles aménagées offrent des conditions correctes de conservation, et permettent aux collections d'être régulièrement étoffées.

La stabilisation des collections dans des réserves pérennes ouvre la possibilité de développer des actions culturelles récurrentes, telles que des visites de réserves ou des expositions permanentes et temporaires. L'INSA Rouen Normandie a créé le Cabinet de curiosités, un espace d'exposition renouvelé deux fois par an, tandis que l'UFR des sciences a investi dans du mobilier d'exposition et créé son espace, la Galerie de l'instrumentation.

Exposition d'instruments scientifiques des collections de l'université Rouen Normandie.

L'inventaire du fonds Lallemand à l'Observatoire de Paris

Frédéric Soulu

L'Observatoire de Paris, fondé en 1667, est un établissement public qui accueille aujourd'hui 800 chercheurs, ingénieurs et personnels administratifs et techniques au sein de l'université PSL1. Près de quatre siècles de travaux de recherche astronomique, météorologique, géophysique, d'invention et de développement d'instruments ont stratifié dans ses trois sites – la station de radioastronomie de Nançay, l'observatoire de Meudon et le site historique parisien – une accumulation de traces matérielles de ses activités². La bibliothèque, en charge du soutien à la recherche mais aussi de la politique archivistique et patrimoniale de l'établissement, accueille une mission archives chargée de traiter les archives contemporaines. Il reste aujourd'hui plusieurs kilomètres linéaires d'archives non traitées, sans compter celles nativement électroniques qui pèsent sur le fonctionnement de ce service. Dans ce contexte, un dispositif tout à fait original et nouveau de résidence de recherche accompagnée et financée par l'infrastructure CollEx-Persée a rendu possible le traitement d'un fonds important de l'Observatoire, le fonds André-Lallemand³. Cette résidence associe un chercheur avec un référent Information scientifique et

¹ Sur les débuts de l'Observatoire de Paris : Lequeux, J., Bobis, L., *L'Observatoire de Paris, 350 ans de science*, Paris, Gallimard, 2012, 173 p.; Deias, D., *Inventer l'Observatoire : sciences et politique sous Giovanni Domenico Cassini (1625-1712)*, thèse de doctorat soutenue au centre Alexandre-Koyré, EHESS, Paris (codirection avec IMJ-PRG), directeurs de thèse Aubin, D., et Raj, K., en décembre 2020.

² Sur l'histoire plus contemporaine de l'Observatoire et les instruments d'observation très divers mobilisés, voir par exemple : Audouin, D., *La Grande Lunette de Meudon : les yeux de la découverte*, Paris, CNRS Éditions, 2006, 185 p.; Launay, F., *Un globe-trotter de la physique céleste : l'astronome Jules Janssen*, Paris, Vuibert, 2008, 281 p.; Orchiston, W., Lequeux, J., Steinberg, J. L., Delannoy, J., « Highlighting the History of French Radio Astronomy. 3: The Würzburg Antennas at Marcoussis, Meudon and Nançay», *Journal of Astronomical History and Heritage*, vol. 10, n° 3, 2007, p. 221-245; Lequeux, J., Steinberg, J. L., Orchiston, W., « Highlighting the History of French Radio Astronomy. 5: The Nançay Large Radio Telescope», *Journal of Astronomical History and Heritage*, vol. 13, n° 1, 2010, p. 29-42; Le Guet-Tully, F., Davoigneau, J., « L'inventaire et le patrimoine de l'astronomie : l'exemple des cercles méridiens et de leurs abris », *In Situ* [en ligne], n° 6, 2005, mis en ligne le 15 mai 2012, URL : http://journals.openedition.org/insitu/9177; DOI : https://doi.org/10.4000/insitu.9177

³ https://www.collexpersee.eu/projet/emergence-de-limagerie-electronique-en-france/

technique de l'établissement, ici la directrice adjointe de la bibliothèque de l'Observatoire de Paris ⁴.

Le fonds Lallemand documente l'activité du laboratoire éponyme qui, à la fin de la Seconde Guerre mondiale, accompagne l'essor de l'astrophysique en France par la production de détecteurs et caméras électroniques diffusés dans les observatoires nationaux et internationaux⁵. Ce type d'instrumentation scientifique émerge dans les années 1930. Ce sont des instruments fondés sur l'effet photoélectrique, comme le microscope électronique inventé en Allemagne, dont les laboratoires universitaires et industriels sont aux avant-postes du développement des tubes cathodiques⁶.

Le projet de la résidence, au-delà du tri et du classement du fonds d'archives, était de documenter ces ruptures techniques mais aussi d'interroger leurs conséquences sur le champ astronomique parisien et français, et sur la structuration physique des observatoires. Les archives à trier sont inédites et constituent donc une opportunité rare pour un historien 7. Des entretiens avec les derniers acteurs de cette période mais aussi l'inventaire ou le récolement d'instruments et artefacts divers sont venus compléter l'enquête. Nous retracerons rapidement ici l'histoire de ce laboratoire, puis examinerons les éléments nouveaux de connaissance apportés par le fonds d'archives relativement aux artefacts, enfin nous interrogerons le processus de patrimonialisation en cours autour de cet ancien laboratoire.

Lallemand et le laboratoire de physique astronomique de l'Observatoire de Paris

Les instruments d'optique électronique développés dans la décennie 1930 sont fondés sur une analogie entre la lumière, qui peut être focalisée avec des lentilles, et un courant d'électrons qui peut être focalisé avec des dispositifs électrostatiques ou magnétiques. Dans le domaine astronomique, ces dispositifs techniques ont été couplés à des convertisseurs de lumière, les photons étant transformés en électrons au contact de couches chimiques particulières par effet photoélectrique. Ces particules peuvent alors être visualisées sur des écrans cathodiques ou enregistrées sur des plaques photographiques nucléaires.

⁴ Je souhaite ici remercier l'équipe de la bibliothèque qui a contribué au succès de cette résidence, de près ou de loin, et accepté cette intrusion au long cours. J'ai aussi beaucoup appris sur la dynamique des collections et de ces lieux que je fréquentais sans savoir ce qui se passait « derrière le rideau ».

⁵ Pestre, D., «La reconstruction des sciences physiques en France après la Seconde Guerre mondiale. Des réponses multiples à une crise d'identité», in Atten, M. (dir.), Histoire, recherche, télécommunications. Des recherches au CNET (1940-1965), Paris, CNET, Réseaux, 1996, H. S. n° 14, p. 22-42.

⁶ Abramson, A., The History of Television, 1880 to 1941, Jefferson, McFarland, 1987; Abramson, A., The History of Television, 1942 to 2000, Jefferson, McFarland, 2003.

⁷ Ce fonds, avant son inventaire, a été consulté par Dominique Pestre dans le contexte de ses travaux sur la recherche française en physique au service de la défense nationale pendant et après la Seconde Guerre mondiale.

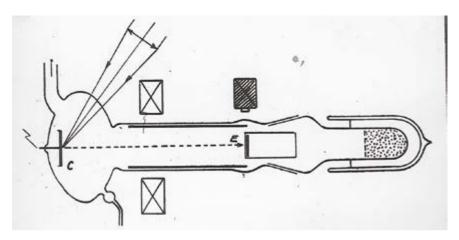


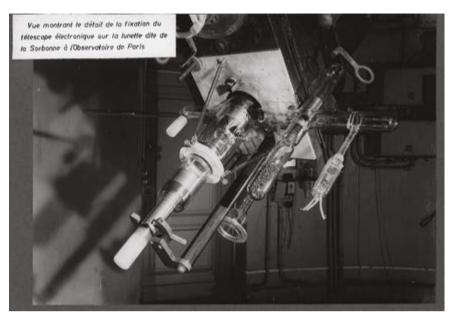
Schéma du télescope électronique (1936), Observatoire de Paris. Le rayonnement lumineux est focalisé sur une photocathode (C) et converti en électrons. Ces électrons sont alors accélérés et focalisés sur une plaque photographique (E) refroidie

Le signal lumineux initial est alors fortement amplifié. André Lallemand (1904-1978), physicien venu à l'astronomie, réalise le premier prototype de «lunette à électrons», ou «télescope électronique», désignations qui seront par ailleurs abandonnées, à l'université de Strasbourg⁸.

Dans l'observatoire strasbourgeois, un lieu en redéfinition sociale et épistémologique à la suite de la reprise de l'Alsace par la France, Lallemand bénéficie des idées et techniques nouvelles en physique et en chimie, souvent venues d'Allemagne, et des collaborations avec l'Institut de physique de Pierre Weiss (1865-1940) et de l'Institut de chimie de l'université. Sur une paillasse, la caméra électronique se constitue d'une photocathode circulaire au potassium de 8 cm de diamètre enfermée dans une ampoule de verre sous vide. Une couche d'argenture sert de lentille électrique; une bobine plate entourant le tube de verre permet la focalisation de l'image sur un écran fluorescent ou sur une plaque photographique située à 35 cm de la photocathode. Les électrons sont accélérés par un champ électrique de plusieurs milliers de volts. L'image d'une étoile artificielle est obtenue et l'invention présentée en 1936 à l'Académie des sciences 9.

⁸ Quelques références biographiques sur André Lallemand: Pecker, J.-C., Journal des astronomes français, n° 3, 1978, p. 22; Fehrenbach, C., «Notice nécrologique sur André Lallemand (1904-1978)», Publications de l'Institut de France, n° 14, 91978, p.; Lelièvre, G., «L'électronographie en France. Historique et utilisation», département optique et photométrie, rapport d'activité 1977-1978, Observatoire de Paris, 1979, p. 1-13; Wlérick, G., «Le cinquantenaire de la caméra électronique de Lallemand», Journal of Optics, n° 18, 1987, p. 167-176; Bijaoui, A., «Lallemand, André», in Hockey, T. (ed.), The Biographical Encyclopedia of Astronomers, New York, Springer, 2007, p. 670-671.

⁹ Voir ses deux articles princeps: Lallemand, A., «Photoélectricité. Application de l'optique électronique à la photographie », *Comptes rendus des séances de l'Académie des sciences*, vol. 203, 1936, p. 243-244; Lallemand, A., «Photoélectricité. Sur l'application à la photographie d'une méthode permettant d'amplifier l'énergie des photons », *Comptes rendus des séances de l'Académie des sciences*, vol. 203, 1936, p. 990-991.


La recherche de Lallemand est interrompue par la guerre et il rejoint le laboratoire de Bellevue à Meudon pour participer au développement d'armements et de techniques au profit de l'armée. Avant sa démobilisation, il développera des cellules photoélectriques adaptées en particulier à l'imagerie infrarouge, et susceptibles d'intéresser la Marine. Il travaille alors avec Louis Néel (1904-2000) et Paul Soleillet (1902-1992). En 1943, André Lallemand est recruté à l'Observatoire de Paris par Ernest Esclangon (1876-1954), son ancien directeur à Strasbourg. Après-guerre, il travaille sur deux types de détecteurs fondés sur la photoélectricité et plus rapides qu'un système photographique simple. Ce sont les caméras électroniques avec leur corps d'optique électronique calculé et testé par Maurice Duchesne (1913-2004). Mais il étudie aussi, dans le même temps, les photomultiplicateurs, qui ne donnent pas d'image mais un courant électrique mesurable.

Pour développer ces instruments, André Lallemand bénéficie de l'appui de la Marine, qui reste intéressée par le développement d'un système de vision amplifiée nocturne. Il obtient l'installation à l'Observatoire de Paris d'un laboratoire reconstitué par les prises de guerre de la mission d'Yves Rocard (1903-1992) en Allemagne : du matériel, des produits chimiques et des savants et techniciens allemands volontaires ¹⁰. Les savoir-faire allemands développés pendant la guerre dans ce domaine d'activité sont ainsi transférés à des équipes françaises civiles et militaires. Savants et techniciens allemands et techniciens français, tous employés par la Marine et dirigés par Marc Munsch (1908-1997), travaillent aux côtés de quelques jeunes ingénieurs et docteurs en formation sélectionnés par Lallemand ou Rocard ¹¹. Le laboratoire de la Marine à l'Observatoire était un bâtiment temporaire dans les jardins, appelé «la baraque» et qui est aujourd'hui détruit ¹². D'autres lieux, dans différentes constructions de l'Observatoire, accueillent les activités de l'équipe : pavillon Baillaud, Petit Coudé, salle Cassini dans le bâtiment Perrault.

¹⁰ Defrance, C., «La mission du CNRS en Allemagne (1945-1950) », *La Revue pour l'histoire du CNRS* [en ligne], n° 5, 2001, mis en ligne le 20 juin 2007, consulté le 1^{er} juillet 2022. URL: http://journals.openedition.org/histoire-cnrs/3372; DOI: https://doi.org/10.4000/histoire-cnrs.3372; Pestre, D., «Guerre, renseignement scientifique et reconstruction, France, Allemagne et Grande-Bretagne dans les années 1940», in Guillerme, A. (éd.), «De la diffusion des sciences à l'espionnage industriel xv^e-xx^e siècle » Actes du colloque de Lyon (30-31 mai 1996) de la SFHST, *Cahiers d'histoire et de philosophie des sciences*, n° 47, Lyon, ENS Éditions, 1999, p. 183-201.

¹¹ Ils sont désignés comme les «Jeunes Turcs» de la physique française par Pestre. Pestre, D., «La reconstruction des sciences physiques en France après la Seconde Guerre mondiale. Des réponses multiples à une crise d'identité», in Atten, M. (dir.), *Histoire, recherche, télécommunications. Des recherches au CNET (1940-1965)*, Paris, CNET, *Réseaux*, H. S. n° 14, 1996, p. 21-42.

¹² La Marine et les organismes géographiques successifs de l'armée collaborent avec les astronomes de l'Observatoire de Paris depuis sa fondation.

Caméra au foyer de la lunette dite « de la Sorbonne », 1954.

Le développement rapide de la technique et les premiers succès sur le ciel nocturne ¹³ conduisent à la construction d'un bâtiment spécifique en 1961, bien après le départ des derniers savants allemands, dans un contexte politique d'investissement massif de l'État dans la science ¹⁴. Le nouveau laboratoire est adapté à la fabrication rationnelle de la caméra : mécaniciens, verriers et chimistes sont disposés autour des chercheurs et ingénieurs. Le bâtiment se situe au nord-est de l'Observatoire, le long du mur d'enceinte, et il est assez discret. Un second site du laboratoire est ouvert à Meudon vers 1957 autour de Gérard Wlérick.

Les photomultiplicateurs sont produits à plusieurs centaines d'unités et diffusés en France et dans le monde. Ils sont utilisés par les astronomes mais aussi par les physiciens dans le domaine nucléaire ou par les géophysiciens. Un contrat est signé par exemple avec la société américaine Schlumberger pour développer, produire puis transférer vers les États-Unis un modèle adapté à la prospection pétrolière ¹⁵. Roger Alexandre (1920-1992), maître verrier

¹³ Lallemand, A., Duchesne, M., «Sur le développement d'un récepteur idéal de photons», *Comptes rendus hebdomadaires de l'Académie des sciences*, vol. 238, 1954, p. 335-337.

¹⁴ Chatriot, A., Duclert, V., «Le gouvernement de la recherche. Histoire d'un engagement politique, de Pierre Mendès France au général de Gaulle (1953-1969) », Paris, La Découverte, «Recherches », 2006; Edgerton, D., «L'État entrepreneur de sciences », in Bonneuil, C., Pestre, D. (dir.), Histoire des sciences et des savoirs, vol. 3, «Le siècle des technosciences 1914-2014 », Paris, Seuil, 2015, p. 66-83.

¹⁵ Causse assurera pour Schlumberger la production de photomultiplicateurs géophysiques mais aussi destinés aux activités spatiales américaines dans ses débuts (1960-1962).

de l'Observatoire, et le physicien Jean-Pierre Causse (1926-2018), ancien chercheur du laboratoire, sont les acteurs principaux de cette collaboration supervisée par Rocard et Lallemand ¹⁶.

Le premier exemplaire de caméra « autonome », c'est-à-dire affranchie de son bâti de préparation et de sa pompe à vide, est placé au foyer de la lunette, dite « de la Sorbonne » vers 1953, à l'Observatoire de Paris. Dès lors, les caméras électroniques produites à plusieurs dizaines d'unités sont installées dans les plus grands télescopes nationaux disponibles dans les années 1960 : celui du pic du Midi et ceux de l'Observatoire de Haute-Provence. Des exemplaires sont aussi vendus aux Américains. Conservé dans le fonds Lallemand, le plan d'un ménisque, qui est le support de la couche photo-électrique, en témoigne ¹⁷. La mention « Pour Lick » indique qu'il est destiné à l'observatoire que l'université de Berkeley a construit en Californie. En 1959, le grand télescope de 3 mètres, le second en taille dans le monde lors de sa mise en service, est équipé d'une caméra électronique d'origine parisienne ¹⁸.

Si la caméra électronique connaît un certain succès, elle est cependant en compétition avec d'autres détecteurs électroniques dans les années 1960 et 1970 19. Un nouveau modèle de caméra à «grand champ», et à optique électronique magnétique, est développé dans les années 1970 et prend place dans les observatoires internationaux du Chili et d'Hawaï. Cependant, le choix des astronomes se porte massivement au début des années 1980 sur la technique des Couple Charge Devices (CCD) 20 qui permet l'obtention immédiate des données d'observation. Cette voie technique qui existait depuis la fin des années 1960 est encouragée aux États-Unis dans le cadre du programme de télescope spatial 21. Cette situation conduit à l'abandon rapide et brutal des caméras Lallemand. La dernière caméra en usage astronomique est décommissionnée en 1987 à l'observatoire Canada-France-Hawaï ²². Les caméras électroniques ont cependant permis quelques observations astronomiques remarquables parmi lesquelles on peut mentionner l'identification du composant optique de quasar, la rotation du noyau de la galaxie M31, les mesures de caractéristiques de l'anneau de Saturne, la mesure d'étoiles

¹⁶ «Contrat Electro-Mechanical Research Inc», 19 AO 115, bibliothèque de l'Observatoire de Paris.

 $^{^{\}rm 17}\,$ « Plan de ménisque », 1960, 19 AO 226, bibliothèque de l'Observatoire de Paris.

¹⁸ Lallemand, A., Duchesne, M., Walker, M. F., «The Electronic Camera, its Installation, and Results Obtained with the Lick 120-inch Reflector», *Publications of the Astronomical Society of the Pacifi*c, vol. 72, n° 427, 1960, p. 268-282. DOI:10.1086/127523.

¹⁹ McCray, W. P., «How Astronomers Digitized the Sky», Technology and Culture, vol. 55, nº 4, 2014, p. 926.

²⁰ En français « détecteurs à transfert de charge » ; l'acronyme anglais a été universellement adopté cependant.

²¹ Smith, R. W., Tatarewicz, J. N., «Replacing a Technology: The Large Space Telescope and CCDs», *Proceedings of the IEEE*, vol. 73, n° 7, 1985, p. 1221-1235, DOI:10.1109/PROC.1985.13268, cité par Galison, P., *Image and Logic: a Material Culture of Microphysics*, Chicago et Londres, The University of Chicago Press, 1997, p. 41.

²² Un exemplaire était peut-être en fonctionnement à l'Observatoire de Haute-Provence jusqu'au début des années 1990.

doubles très serrées et avec de grands écarts d'éclat 23 ... Mentionnons aussi des utilisations non astronomiques dans le domaine de la spectroscopie atomique par exemple 24 .

Le parcours erratique du fonds Lallemand

Les acteurs de cette histoire de la caméra électronique à l'Observatoire de Paris avaient le souci de laisser traces et témoignages de leurs inventions. Lallemand lui-même, dans les premières années, constitue un album photographique illustrant des années 1930 aux années 1950 les principales étapes du développement de l'instrument ²⁵. Des vitrines étaient aménagées dans les différents laboratoires de l'équipe pour présenter leurs meilleures réalisations ²⁶. Lors de la dissolution du laboratoire, Léopold Renard (1924-2015), le principal projeteur entré en 1952, rédige un mémoire de 300 pages sur l'histoire de la caméra ²⁷. Certains de ses collègues conditionnent et stockent des caméras pour les préserver de la destruction, y compris en les dispersant dans l'établissement.

Le fonds d'archives Lallemand a eu une trajectoire compliquée. Son cœur est constitué par les archives personnelles et de recherche d'André Lallemand, qui prend sa retraite en 1974 tout en continuant à fréquenter le laboratoire jusqu'en 1978, date de son décès accidentel. Ses archives sont conservées en place, et des liasses de ses collègues y sont adjointes au fur et à mesure de leur départ. Vers 1995, un versement est organisé à la bibliothèque de l'Observatoire de Paris. Les archives y sont stockées dans le bureau d'une bibliothécaire, fille d'un membre de l'équipe Lallemand, puis à partir de 2010 dans des réserves. Ce fonds a été acheminé en 2021 sur le site de Meudon pour la résidence de recherche. Il était alors composé de vingt-six cartons de déménagement dans lesquels les liasses étaient partiellement organisées.

²³ Lallemand, A., Duchesne, M., Walker, M. F., «The Rotation of the Nucleus of M 31», Publications of the Astronomical Society of the Pacific, vol. 72, nº 425, 1960, p. 76-84, DOI: 10.1086/127485; Bellier, M., Dupré, M. F., Wlérick, G., Rösch, J., Arsac, J., «Photométrie de Jupiter et Saturne à partir de clichés obtenus avec la caméra électronique», Mémoires Société Royale Sciences Liège, tome 7, 1963, p. 522-534; Rösch, J., Wlérick, G., Dupré, M. F., «Astronomie. La mesure des étoiles doubles au moyen de la photographie électronique», Comptes rendus des séances de l'Académie des sciences, vol. 252, 1961, p. 509-511.

²⁴ Bied-Charreton, P., Bijaoui, A., Duchesne, M., Le Contel, J. M., «Sur quelques progrès récents apportés à la caméra électronique à focalisation électrostatique et sur son application en physique et en astronomie», *Advances in Electronics and Electron Physics*, vol. 28, part A, 2.5p. 27-37, DOI: https://doi.org/10.1016/S0065-2539 (08) 61341-4.

²⁵ «Album photographique sur la caméra électronique», 19 AO 426, bibliothèque de l'Observatoire de Paris.

²⁶ Entretiens avec Françoise Gex et Gérard Lelièvre, 19 AO 432, bibliothèque de l'Observatoire de Paris.

²⁷ «Dossier documentaire sur la caméra», 19 AO 424, bibliothèque de l'Observatoire de Paris.

L'aventure Michelin

Marie-Claire Demain-Frackowiak

«Ce n'est pas avec l'avant-dernier progrès qu'il faut marcher, ni même avec le progrès du jour, mais avec celui de demain.» Par ces mots, André Michelin tente de convaincre son frère Édouard, en 1894, que l'avenir est au pneu automobile et non à celui de la voiture à cheval.

Cette assertion est emblématique des valeurs fondatrices de Michelin, une manufacture créée en 1889. Aussi, ses collections patrimoniales doivent refléter cet état d'esprit «pionnier», qui passe résolument à la fois par les équipements techniques et par les démarches scientifiques du groupe au fil des décennies.

Les parties prenantes chez Michelin

En préambule, présentons succinctement les deux structures principalement parties prenantes de l'histoire de l'innovation chez Michelin.

Le département Patrimoine historique

Le département Patrimoine historique a pour objectif et volonté de conserver les traces de l'histoire du groupe dans tous les domaines, notamment celui des sciences et techniques. Au niveau du groupe Michelin, notre département est rattaché à la DCEM (direction corporate de l'engagement et des marques) puisqu'il est considéré que son action contribue, en interne, à créer de l'adhésion à la marque et à favoriser l'appropriation par les employés de sa dimension historique internationale (notamment un attachement significatif, partout dans le monde, au personnage de Bibendum) ; en externe, à valoriser la marque et protéger sa réputation.

Une première structure autour du patrimoine de Michelin baptisée CIRM (Centre d'information et de rencontre Michelin) avait été initiée dans les années 1980. Mais elle ne bénéficiait pas d'un fonctionnement archivistique professionnalisé, et l'accès à son petit espace d'exposition permanente était limité au personnel et à certaines visites de clients. Tout change en 2009 :

le souhait du gérant Édouard Michelin, décédé prématurément en 2006, est respecté, et l'Aventure Michelin est inaugurée. Il s'agit désormais d'un espace muséal ouvert au grand public, installé dans un ancien bâtiment industriel sur le site de Cataroux (Clermont-Ferrand).

La structure du bâtiment se décompose alors en deux parties d'environ 2000 m² chacune : le parcours scénographique de l'Aventure Michelin et le département Patrimoine historique. Nos locaux abritent vingt salles d'archives, chacune dédiée à un type de collection (affiches, cartes et guides, prospectus publicitaires, photographies...). Ces réserves sont un espace de travail dédié à l'équipe, non visitable. Une salle entière est dédiée au patrimoine scientifique et technique, et conserve plus de 2000 instruments. L'inventaire de cette salle bénéficie de l'aide du Muséum Henri-Lecoq, dans le cadre de la mission PATSTEC Auvergne, grâce à la convention de partenariat signée entre la métropole de Clermont-Ferrand et Michelin en 2009.

Parmi les catégories de cet inventaire PATSTEC, citons :

- les instruments de mesure et d'observation;
- des objets médicaux (médecine du travail, hôpital de guerre, cabinet de consultation médicale pour les employés et leurs familles depuis 1902);
- le domaine de la fabrication du pneu (hévéaculture, composants, outillage);
- les instruments autour de la cartographie et du dessin (pour l'élaboration des cartes et guides).

À titre d'exemple, la thématique des instruments de mesure et d'observation totalise à elle seule près de 800 fiches.

Le domaine de la recherche chez Michelin (du laboratoire à la R&D)

Certains modes de fonctionnement Michelin représentent un véritable fil conducteur à travers les époques : innover pour faciliter la mobilité.

Dès 1892, Michelin investit dans le domaine de la recherche. Le chimiste Maximilien Gerber (1856-1919) est chargé d'installer un laboratoire pour étudier le caoutchouc. À la fin du XIX^e siècle, Michelin est déjà fortement engagé dans la recherche fondamentale autour des matériaux, des mélanges ou encore de la vulcanisation, afin de sélectionner les meilleurs composants et d'optimiser leur association.

Difficile de résumer en quelques lignes les jalons d'une innovation permanente depuis plus de cent trente ans, mais mettons ici en lumière quelques dates incontournables :

– 1914 : en trois semaines, Michelin crée sur son site des Carmes (Clermont-Ferrand) un hôpital pour soigner les blessés de guerre. L'entreprise s'équipe d'un appareil Gaiffe à commutateur tournant, permettant de réaliser des radiographies et des localisations de projectile au 1/100 de seconde;

Maximilien Gerber dans son laboratoire. Collection du Patrimoine historique Michelin, Clermont-Ferrand.

- 1927 : inauguration des pistes d'essai de Cataroux : trois bâtiments, d'une surface totale de 22 000 m², abritent douze pistes pour tester l'endurance des pneumatiques. Longueur : plus de 400 m, hauteur : de 21 à 28 m;
- 1946 : Michelin dépose le brevet du pneu radial. C'est une révolution dans le domaine du pneumatique;
- 1947 : Michelin est la première entreprise française à s'équiper d'un microscope électronique à transmission (MET) (détaillé dans la 2° partie de cet exposé).

La conjonction de ces deux dates est révélatrice de l'état d'esprit de Michelin : l'entreprise ne s'endort pas sur ses lauriers! Au contraire, elle reste animée par la volonté de toujours être à la pointe de la recherche liée aux matériaux.

• 1965 : création du Centre de recherches et d'essais sur le nouveau site de Ladoux (près de Clermont-Ferrand).

Recherches : il s'agit d'un pôle de recherche pluridisciplinaire ¹, où se côtoient sur 450 hectares essayeurs, ingénieurs et chimistes (en acoustique, optique, pyrométrie, thermodynamique, mécanique, métrologie, électricité…).

Essais : dès l'inauguration du Centre, de nombreux véhicules sont adaptés et équipés pour faire les tests. Au début des années 1970, certains sont même entièrement conçus par Michelin. C'est le cas du « Mille-Pattes » en 1972 ². Une roue centrale porte le pneu (de poids-lourds) à tester. Malgré ses 9 tonnes, le véhicule est propulsé à 160 km/h.

• 2020 : quelques chiffres illustrent le domaine du R&D chez Michelin : un budget de 646 millions d'euros, 6000 employés dans 350 domaines

¹ En 2016, un nouveau bâtiment de 67 000 m², pouvant accueillir 1 600 personnes, a été inauguré sur le site de Ladoux, près de Clermont-Ferrand. Laboratoire de très haut niveau doté de moyens de calcul surpuissants, Urbalad a pour ambition d'être le centre de recherches le mieux équipé au monde.

² Le véhicule est désormais exposé à l'Aventure Michelin (Clermont-Ferrand).

Marie-Claire Demain-Frackowiak

Le Mille-Pattes, véhicule de test conçu par Michelin. Collection du Patrimoine historique Michelin, Clermont-Ferrand.

d'expertise, répartis sur les sites globaux du groupe en Europe (de la Finlande à l'Espagne), en Asie (Japon, Chine, Thaïlande), en Amérique (Canada, États-Unis, Brésil), en Inde... 10785 brevets déposés par Michelin sont en vigueur à travers le monde. Mentionnons d'ailleurs le Centre de recherches dans le cadre du programme «Ouro Verde» initié en 2003 à Bahia, avec 124 projets de recherche ayant donné lieu à 160 publications scientifiques.

Un exemple d'action réussie dans le patrimoine de la recherche industrielle : inscription et classement d'un microscope électronique à transmission au titre des monuments historiques

En 1947, Michelin est la première entreprise française à s'équiper d'un microscope électronique à transmission (MET). Il s'agit d'un prototype, mis au point par la Compagnie générale de télégraphie sans fil (CSF). L'objectif principal est de procéder à des analyses physiques en réalisant des milliers de clichés – le tout permettant la sélection des meilleurs matériaux, le contrôle des matières premières et donc une performance optimale des pneus. Un ingénieur spécialiste en technologie du vide, Jacques Bouteville (1920-2011), est spécialement recruté à cet effet.

Microscope électronique à transmission acquis par Michelin en 1947 (classé monument historique en 2016). Collection du Patrimoine historique Michelin, Clermont-Ferrand.

Ce MET sera réformé en 1961 pour un modèle plus performant fabriqué par le Japan Electron Optics Laboratory (également intégré à nos collections patrimoniales).

Grâce au partenariat Muséum Henri-Lecoq – Michelin, il a été acté que ce MET était une pièce majeure du patrimoine scientifique et technique de Michelin, et qu'il devait être conservé au sein de ses collections. Cette intégration a fait l'objet d'une fiche d'inventaire versée à la base de données PATSTEC Auvergne. Une interview de Jacques Bouteville complète l'inventaire de cet instrument, soulignant l'importance de la prise en compte conjointe du patrimoine matériel et immatériel dans la démarche d'inventaire de la mission nationale PATSTEC. Par ailleurs, une action (DRAC-Michelin-Muséum Henri-Lecoq) a été menée pour son inscription et son classement; le dossier a été porté conjointement par le Muséum et le département Patrimoine historique. Aujourd'hui visible dans l'Aventure Michelin, ce microscope électronique à transmission illustre la recherche au sein du groupe. C'est à ce jour le seul objet présenté dans le parcours scénographique de l'Aventure Michelin classé au titre des monuments historiques.

Les objectifs à poursuivre, les enjeux majeurs du patrimoine scientifique et technique de Michelin

Pour le département Patrimoine historique, l'enjeu est donc de patrimonialiser, au sens archivistique du terme, ce que font aujourd'hui les scientifiques (R&D), les juristes (propriété intellectuelle), et les équipes et ateliers de production. Nous l'avons vu, l'innovation est partie prenante de l'ADN de Michelin depuis ses origines. Il est donc important de pouvoir documenter plusieurs époques. Compte tenu des volumes évoqués, nous ne pouvons prétendre à l'exhaustivité, mais nos collections doivent être représentatives des activités du groupe : non seulement des outils et matériaux anciens, mais aussi de la production contemporaine.

Notre mission s'organise ainsi autour de trois pôles : collecter, conserver, valoriser. Le recueil de témoignages oraux (RTO) est également un vecteur important de la transmission, dans une entreprise où il n'était pas rare d'y faire toute sa carrière. Dans cette démarche patrimoniale, notre équipe bénéficie de l'expertise technique et scientifique des personnes missionnées par PATSTEC : l'inventaire (pour la conservation), le conseil ou la sensibilisation (pour la collecte), la médiation culturelle (pour la valorisation), par exemple pour la Semaine de l'industrie.

Le partenariat instauré depuis 2009 entre Clermont Auvergne Métropole et son Muséum d'une part, et Michelin d'autre part, constitue une émulation qui ne s'essouffle pas et qui s'enrichit continûment de nouveaux projets et perspectives de collaboration. C'est une fierté, et un encouragement à poursuivre dans cette voie!

Depuis la fin de la Seconde Guerre mondiale, la recherche scientifique connaît un essor sans précédent, transformant notre environnement quotidien de manière profonde et durable. L'évolution rapide des sociétés – de traditionnelles à modernes, puis post-modernes – fait naître à la fois une conscience de la nécessité de sauvegarder la trace des pratiques, objets et savoirs en voie de disparition et un engouement pour le patrimoine.

Dans le domaine de la recherche, le changement, encore plus accéléré, a pour effet la destruction des instruments et objets techniques, des cahiers de laboratoire, précipitant la disparition de la mémoire des savoir-faire et des connaissances. Or ces traces matérielles et immatérielles sont essentielles non seulement pour retracer l'histoire de la recherche mais également pour nourrir l'innovation de demain.

Face à cet enjeu, en 2003, une mission nationale a été lancée afin de préserver le patrimoine de la recherche sur l'ensemble du territoire national. Ainsi, depuis plus de vingt ans, la mission nationale de sauvegarde du patrimoine scientifique et technique contemporain (PATSTEC) est engagée dans un large processus de sauvegarde et de conservation avec les centres de recherche, les universités, les administrations techniques et les entreprises industrielles.

Cet ouvrage vous invite à découvrir les multiples formes de la sauvegarde, conservation et mise en valeur de ce « nouveau patrimoine » et, à la lumière de ces expériences, vous incite à porter un regard renouvelé sur les sciences et les techniques contemporaines.

Direction de l'information légale et administrative **La Documentation française** https://www.vie-publique.fr/publications

